LINOVISION

IOT-S500WS5

Quick Start Guide

Updated on July29,2024

Safety Precautions

Linovision will not shoulder responsibility for any loss or damage resulting from not following the instructions of this operating guide.

The device must not be disassembled or remodeled in any way.

- · In order to protect the security of the device, please change device password when first configuration. The default password is 123456.
- •The device is not intended to be used as a reference sensor, and Linovision will not should responsibility for any damage which may result from inaccurate readings.
- · Do not place the device close to objects with naked flames.
- · Do not place the device where the temperature is below/above the operating range.
- ·Make sure electronic components do not drop out of the enclosure while opening.
- · When installing the battery, please install it accurately, and do not install the reverse or wrong model.
- · Make sure both batteries are newest when install, or battery life will be reduced.
- ·The device must never be subjected to shocks or impacts.

Declaration of Conformity

WS series is in conformity with the essential requirements and other relevant provisions of the CE, FCC, and RoHS.

Copyright © 2007-2022Linovision. All rights reserved.

All information in this guide is protected by copyright law. Whereby, no organization or individual shall copy or reproduce the whole or part of this user guide by any means without written authorization from Hangzhou Linovision Technologies Co.,Ltd.

For assistance, please contact

Linovision technical support: Email:

sales@linovision.com

Tel: +1(469)-444-2999

URL:support.linovision.com

Address: 701 E Plano Parkway, Ste 100

Plano, Texas, 75074

U.S.A

Contents

1. Product Introduction	4
1.1 Overview	4
1.2 Features	4
2. Hardware Introduction	4
2.1 Packing List	4
2.3 LED and Power Button	6
3. Operation Guide	6
3.1 NFC Configuration	6
3.2 LoRaWAN Settings	8
3.3 Basic Settings	11
3.4 Advanced Settings	11
3.4.1 Threshold Settings	11
3.4.2 Data Storage	12
3.4.3 Data Retransmission	13
3.5 Maintenance	14
3.5.1 Upgrade	14
3.5.2 Backup	15
3.5.3 Reset to Factory Default	17
4. Installation and Maintenance	18
4.1 Installation Locations	18
4.2 Solar Panel and WS Hub Installation	18
4.3 IOT-S500WS5 Installation	20
4.4 Maintenance	21
5. Device Payload	21
5.1 Basic Information	21
5.2 Sensor Data	22
5.3 Downlink Commands	23
5 4 Historical Data Enquiry	26

1. Product Introduction

1.1 Overview

IoT Weather Station (IoT-S500WS5) is an all-in-one LoRaWAN® weather monitoring system for various atmospheric conditions, such as temperature, humidity, wind speed, wind direction and barometric pressure. Consisting of 3 main parts, sensors, Hub and solar panel, IoT Weather Station is designed to withstand the most challenging weather conditions and is easy to install in different scenarios to be widely used in meteorology, smart agriculture, smart building, etc.

Sensor data is transmitted using LoRaWAN® technology. Compliant with Linovision LoRaWAN® gateway and Linovision IoT Cloud solution, users can manage all sensor data and trigger other sensors or appliances easily via webpage or mobile App remotely.

1.2 Features

- · Integrated with multiple sensors like humidity, temperature, barometric pressure, wind speed, wind direction, etc.
- ·Waterproof, UV-proof and salt spray resistant enclosure for outdoor harsh environment applications
- ·High power solar powered with chargeable batteries backup
- ·Store locally more than 19,000 historical records and support retransmission to ensure no data miss
- ·Easy to carry and install
- ·Ultra-wide-distance wireless transmission up to the line of sight of 15 km in rural areas
- ·Equipped with NFC for easy and quick configuration
- ·Compliant with standard LoRaWAN gateways and network servers
- ·Quick and easy management with Linovision IoT Cloud

2. HardwareIntroduction

2.1 Packing List

1 × WS Sensor

1 × WS Hub

1 × Solar Panel

: Solar Panel

1 × Solar Panel

(With Bracket) Mounting Bracket

ensor Cable 1 × WS Hub Mounting Bracket

5 × Fixing Screws

4 × Solar Panel Screws Kits

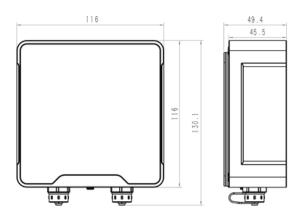
2 × Hose Clamps

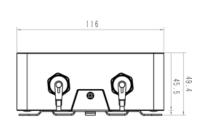
1 × Quick Start Guide

1 × Mounting Bracket

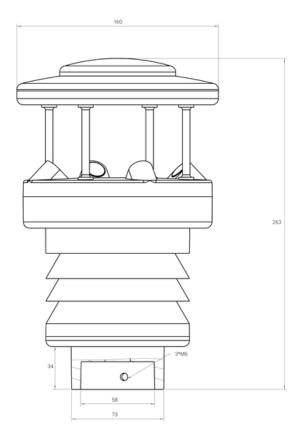
1 × Bent Pipe

3 × Hex Socket Cap Mounting Screws


2 × Hose Clamps



If any of the above items is missing or damaged, please contact your sales representative.


2.2 Dimensions(mm)

WS Hub

IOT-S500WS5

2.3 LED and Power Button

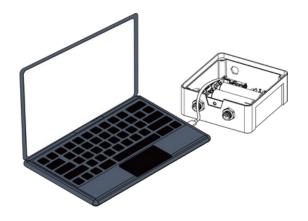
The LED indicator and power button are inside the WS Hub device. Switch on/off and reset can also be configured via NFC.

Function	Action	LEDIndication
TurnOn	Pressandholdthebuttonformorethan3seconds.	Off→On
TurnOff	Pressandholdthebuttonformorethan3seconds.	On->Off
Reset	Pressandholdthebuttonformorethan10seconds.	Blink3times.
Check		LightOn:Deviceison.
On/OffStatus	Quickly press the power button for within 3 seconds.	LightOff:Deviceisoff.

3. Operation Guide

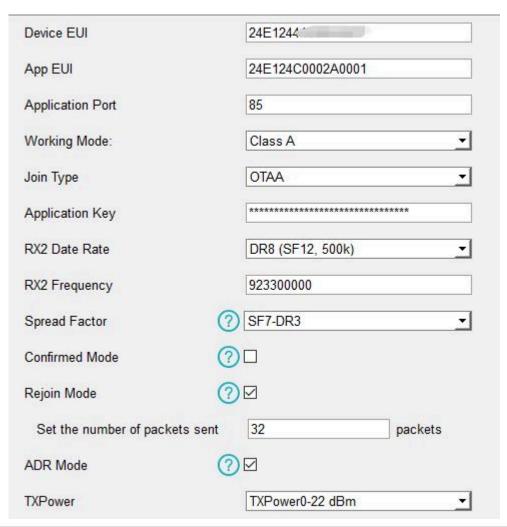
3.1 NFC Configuration

WS Hub can be configured via NFC. Before the configuration, please connect WS Sensor to the right interface of WS Hub via sensor cable to read and test. 1. Download and install "Linovision ToolBox" App from Google Play or Apple Store.


2. Enable NFC on the smartphone and open "Linovision ToolBox" App. 3. Attach the smartphone with NFC area to the device to read basic information.

4. Basic information and settings of WS Hub will be shown on ToolBox if it's recognized successfully. You can read and configure the device by tapping the buttons on the App. In order to protect the security of devices, password validation is required when configuring via unused phone . Default password is 123456.

Status	Setting	Maintenance
SN	64540	C32424650043
Model	\	WTS506-915M
Device EUI	24E12	24454C324246
Firmware Version		V1.1-a3
Hardware Version		V2.0
Device Status		ON

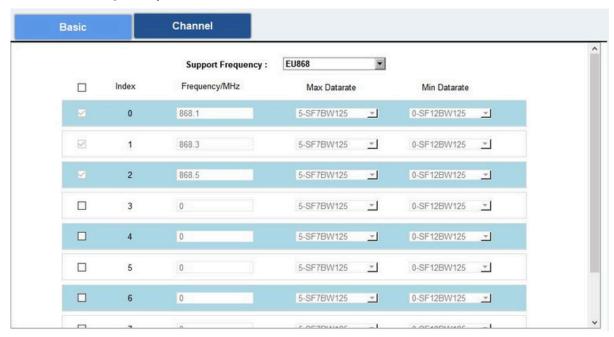

Note: 1) Ensure the location of smartphone NFC area and it's recommended to take off phone case. 2) If the smartphone fails to read/write configurations via NFC, keep the phone away and back to try again. 3) WS Hub can also be configured by dedicated NFC reader provided by Linovision IoT. 4) You can configure it via Type-C USB port inside the device by these steps: release the back panel of WS Hub and connect the device to computer via Type-C port, run ToolBox PC software, select serial port as USB port and type as "General", then type password to login ToolBox and configure the device. (Default password: 123456)

3.2 LoRaWAN Settings

LoRaWAN settings is used for configuring the transmission parameters in LoRaWAN® network. Basic LoRaWAN Settings:

Configure join type, App EUI, App Key and other basic information. You can also keep all settings by default.

Parameters	Description
Device EUI	Unique ID of the device which can also be found on the label.


App EUI	Default App EUI is 24E124C0002A0001.		
Application Port	The port used for sending and receiving data, default port is 85.		
Join Type	OTAA and ABP mode are available.		
Application Key	Appkey for OTAA mode, default is 5572404C696E6B4C6F52613230313823.		
Device Address	DevAddr for ABP mode, default is the 5th to 12th digits of SN.		
Network Session Key	Nwkskey for ABP mode, default is 5572404C696E6B4C6F52613230313823.		
Application Session Key	Appskey for ABP mode, default is 5572404C696E6B4C6F52613230313823.		
LoRaWAN Version	V1.0.2, V1.0.3 are available.		
RX2 Data Rate	RX2 data rate to receive downlinks.		
RX2 Frequency	RX2 frequency to receive downlinks. Unit: Hz		
Spread Factor	If ADR is disabled, the device will send data via this spread factor.		
Confirmed Mode	If the device does not receive ACK packet from network server, it will resend data once.		
	Reporting interval ≤ 35 mins: the device will send a specific number of		
	LinkCheckReq MAC packets to the network server every reporting interval or		
	every double reporting interval to validate connectivity; If there is no response,		
Rejoin Mode	the device will re-join the network. Reporting interval > 35 mins: the device will send a specific number of		
	LinkCheckReq MAC packets to the network server every reporting interval to		
	validate connectivity; If there is no response, the device will re-join the		
	network.		
	When the rejoin mode is enabled, set the number of LinkCheckReq packets to		
Set the number of	send.		
packets sent	Note: the actual sending number is Set the number of packet sent + 1.		
	Allownetworkservertoadjustdatarateofthedevice.		
ADRMode	Transmitpowerofdevice.		
TxPower			

Note:

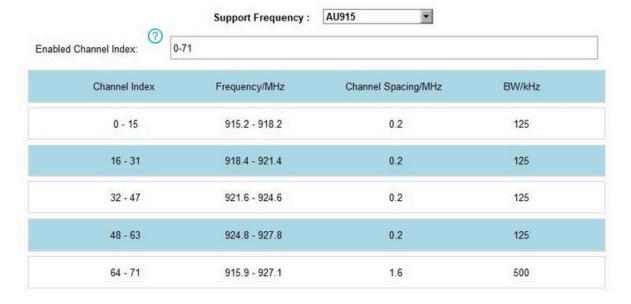
- 1) Please contact sales for device EUI list if there are many units.
- 2) Please contact sales if you need random App keys before purchase.
- 3) Select OTAA mode if you use Linovision IoT Cloud to manage devices.
- 4) Only OTAA mode supports rejoin mode.

LoRaWAN Frequency Settings:

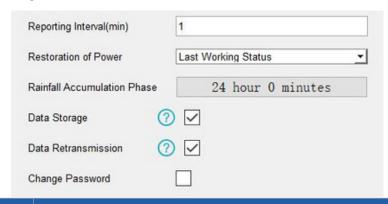
Select supported frequency and select channels to send uplinks. Make sure the channels match the LoRaWAN® gateway.

If the frequency is one of CN470/AU915/US915, you can enter the index of the channel that you want to enable in the input box, making them separated by commas.

Examples:


1, 40: Enabling Channel 1 and Channel 40

1-40: Enabling Channel 1 to Channel 40


1-40, 60: Enabling Channel 1 to Channel 40 and Channel 60

All: Enabling all channels

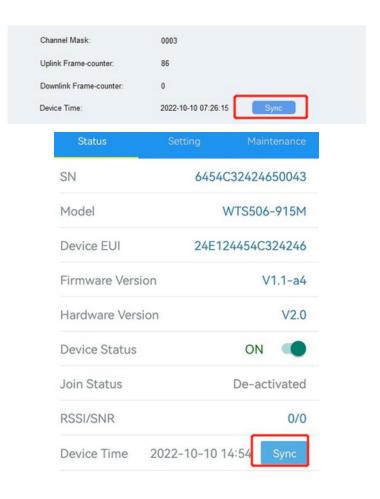
Null: Indicates that all channels are disabled

3.3 Basic Settings

Parameters	Description				
Reporting Interval	Reporting interval of transmitting weather data and battery level to				
	network server. Default: 10 mins, Range: 1-1080 mins.				
Restoration of	If the device loses power and returns to power supply, the device will be				
Power	on or off according to this parameter.				
	After the rainfall accumulates up to this time range or up to 1000 mm, it will clear and re-count the accumulated rainfall value. There are two parameters to set the time range, range: 0~48 h				
Rainfall Accumulation Phase (IOT- S500WS5 Only)	Precipitation Accumulation Phase Hour Minute 24 00 00 10 20 30 40 50				
Data Storage	Disable or enable reporting data storage locally.				
<u>Data</u> <u>Retransmission</u>	Disable or enable data retransmission.				
Change Password	Change the password for ToolBox App to write the device and ToolBox software to configure this device.				

3.4 Advanced Settings

3.4.1 Threshold Settings

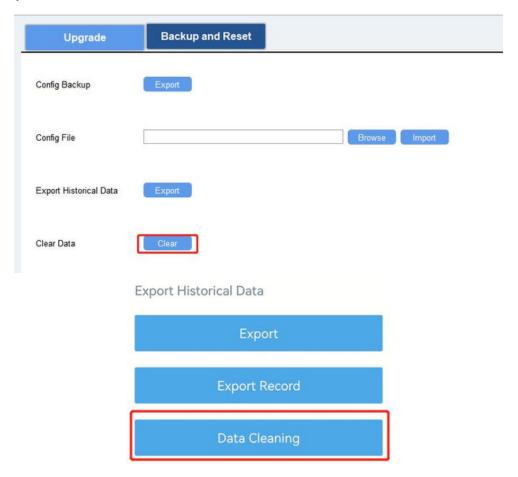

If the threshold is triggered, the device will upload the alarm packet once and collect the data at

the specified interval.

Temperature		
Over	29.9	°C
Below	15	°C
Data Collecting Interval	10	min
Wind Speed	0	
Over	0	m/s
Over	U	1103
Data Collecting Interval	10	min
-		min
Data Collecting Interval Accumulated Rainfall	10	min

3.4.2 Data Storage

WS series supports storing more than 19,000 data records locally and exports data via ToolBox App or ToolBox software. The device will record the data according to reporting interval even not joining to network. 1. Sync the time via ToolBox or downlink commands.



12

- 2. Enable data storage feature.
- 3. Go to Maintenance > Basic of ToolBox software or Device > Maintenance of ToolBox App, click Export, then select the data time period and click Save to export data.

Note: Toolbox App can only export last 14 days' data. If you need to export more data, please use ToolBox software.

4. Click Clear of ToolBox software or Data Cleaning of ToolBox App to clear all stored data if necessary.

3.4.3 Data Retransmission

WS series supports data retransmission to ensure network sever can get all data even if network is down for some times. There are two ways to get the lost data:

- ·Network server sends downlink commands to enquire the historical data for specifying time range, refer section Historical Data Enquiry;
- ·When network is down if no response from LinkCheckReq MAC packets for a period of time, the device will record the network disconnected time and re-transmit the lost data after device re-connects the network.

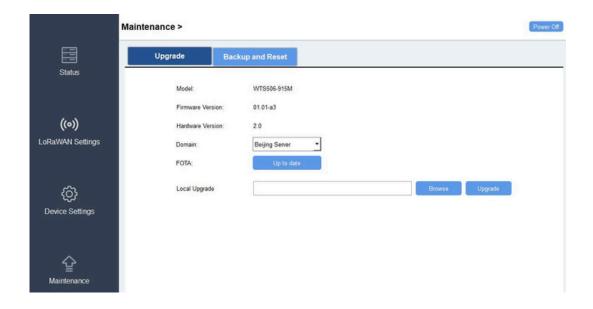
Here are the steps for data retransmission:

1. Enable data storage feature and data retransmission feature.

2. Enable rejoin mode feature and set the number of packets sent. Take below as example, the device will send LinkCheckReq MAC packets to the network server regularly to check if the network is disconnected; if there is no response for 4+1 times, the join status will change to deactive and the device will record a data lost time point (the time to join the network).

3. After the network connected back, the device will send the lost data from the point in time when the data was lost according to the reporting interval.

Note:


- 1) If the device is reboot or re-powered when data retransmission is not completed, the device will re-send all retransmission data again after device is reconnected to the network.
- 2) If the network is disconnected again during data retransmission, it will only send the latest disconnection data.
- 3) The retransmission data format is started with "20ce", please refer to section Historical Data Enquiry.
- 4) Data retransmission will increase the uplinks and shorten the battery life.

3.5 Maintenance

3.5.1 Upgrade

ToolBox Software:

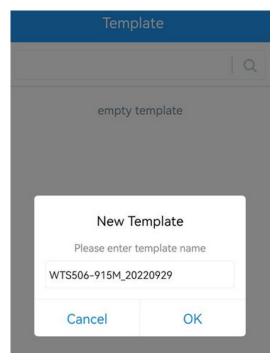
- 1. Download firmware from Linovision official website to your PC.
- 2. Click Browse to import the firmware and upgrade the firmware.

ToolBox App:

- 1. Download firmware from Linovision official website to your smartphone.
- 2. Click Browse to import firmware and upgrade the device. Note: 1) It is not supported to do any operation on ToolBox during upgrading. 2) Only Android version ToolBox App supports upgrade feature.

3.5.2 Backup

WS Hub supports configure backup for easy and quick device configuration in bulk. Backup is allowed only for devices with the same model and LoRaWAN® frequency band. Please select one of following methods to backup device:


ToolBox Software:

- 1. Go to Maintenance > Backup and Reset, click Export to save current configuration as json format backup file.
- 2. Click Browse to select backup file, then click Import to import the configurations.

ToolBox App:

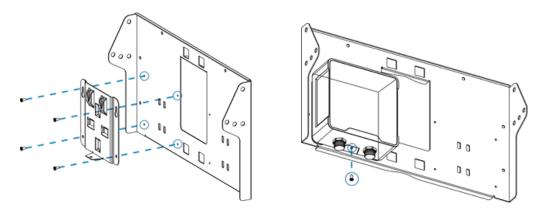
- 1. Go to Template page on the App and save current settings as a template. You can also edit the template file.
- 2. Select one template file which saved in the smartphone and click Write, then attach to another device to write configuration.

Note: Slide the template item left to edit or delete the template. Click the template to edit the configurations.

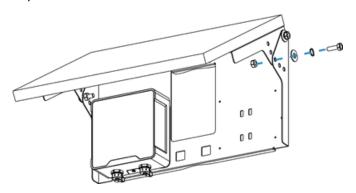
3.5.3 Reset to Factory Default

Please select one of following methods to reset device: Via Hardware: Hold on power button (internal) of WS Hub for more than 10s. Via ToolBox Software: Go to Maintenance > Backup and Reset to click Reset.

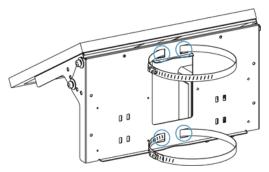
Via ToolBox App: Go to Device >Maintenance to click Reset, then attach smart phone with NFC area to WS Hub to complete reset.

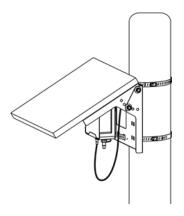

4. Installation and Maintenance

4.1 Installation Locations

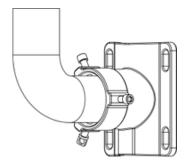

- ☐ Within the communication range of LoRaWAN® gateway.
- □ No high buildings or barriers (trees, telegraph poles) around; the distance between the IoT weather station and the nearest obstacle is preferably 10 times the height of the obstacle.
- ☐ Keep away from radars, transmitters and any other instruments which can generate electrical interference; keep a distance of more than 2 meters between sensor and radar.
- ☐ Keep away from heat sources like chimney, vents, etc.
- □ No fence plants (higher than 1m) around weather station within 10m.

4.2 Solar Panel and WS Hub Installation

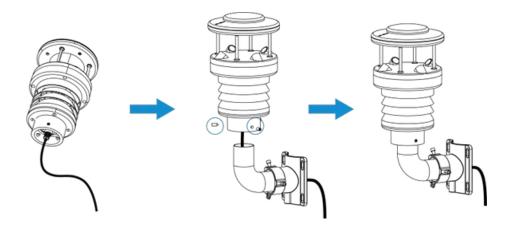

1. Fix the hub mounting bracket to the solar panel bracket with 4 fixing screws, the put the WS Hub to the bracket fix the bottom of hub to the bracket with a fixing screw.


2. Adjust the angle of solar panel brackets (20°,40° or 60° is optional) according to the installation environment, then fix the two sides of bracket with screw kits.

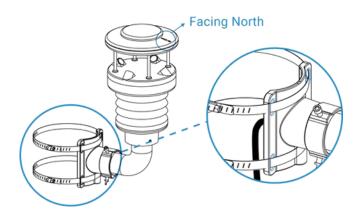
3. Straighten the hose clamps and slide them through the rectangular rings in the solar panel's bracket, wrap the hose clamps around the pole. After that use a screwdriver to tighten the locking mechanism by turning it clockwise.

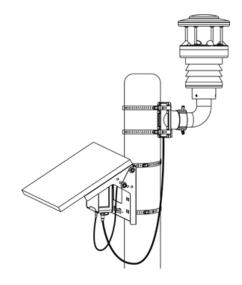


4. Connect the cable of solar panel to left interface of WS Hub.



4.3 IOT-S500WS5 Installation


1. Connect the bent pipe to the mounting bracket, tighten the 2 hex socket cap screws with screwdriver and tighten the insurance screw by hand to ensure the two parts are fixed well.


2. Connect one side of sensor cable to WS Sensor and tighten the cable, pass the cable through the bent pipe and bracket, then connect the pipe to the bottom of sensor and fix both parts with 3 hex socket cap mounting screws.

3. Straighten the hose clamps and slide them through the rings in the bracket, wrap the hose clamps around the pole. After that use a screwdriver to tighten the locking mechanism by turning it clockwise. When installing, ensure the arrow on the sensor facing north according to a compass.

4. Connect the other side of sensor cable to the right interface of WS Hub.

4.4 Maintenance

- ☐ To clean the device, wipe with a soft moistened cloth with soft detergents. When there is
- accumulated snow or ice on the surface of WS sensor, wait for it to dissolve naturally and do not remove with tools forcibly.
- ☐ Do not destroy the surface of devices and solar panel.

5. Device Payload

All data are based on following format (HEX), the Data field should follow little-endian:

Channel1	Type1	Data1	Channel2	Type2	Data2	Channel3	
1Byte	1Byte	NBytes	1Byte	1Byte	MBytes	1Byte	

5.1 Basic Information

WS series sensors report basic information of sensor whenever joining the network.

Channel	Туре	Description
	0b(PowerOn)	Deviceison
	01(ProtocolVersion)	01=>V1
ff	09(HardwareVersion)	0140=>V1.4
"	0a(SoftwareVersion)	0114=>V1.14
	Of(DeviceType)	00:ClassA,01:ClassB,02:ClassC
	16(DeviceSN)	16digits

Example:

ff	Obff ff0101 ff1	66454c32424	650043 ff0902	200 ff0a0101 ff0f00	
Channel	Туре	Value	Channel	Туре	Value

ff	0b(Power on)	ff	ff	01 (Protocol Ve rsion)	01=V1
Channel	Туре	Value	Channel	Туре	Value
ff	16(Device SN)	6454c3242 4650043	ff	09 (Hardware version)	0200 (V2.0)
Channel	Туре	Value	Channel	Туре	Value
ff	0a (Software version)	0101 (V1.1)	ff	0f (Device Type)	00 (Class A)

5.2 Sensor Data

ltem	Channel	Туре	Description
Battery Level	01	75	UINT8, Unit: %
Temperature	03	67	INT16/10, Unit: °C
Humidity	04	68	UINT8/2, Unit: %RH
Wind Direction	05	84	UINT16/10, Unit: °
Barometric Pressure	06	73	UINT16/10, Unit: hPa
Wind Speed	07	92	UINT16/10, Unit: m/s
Rainfall	08	ec	5 Bytes Byte 1-4: Accumulated rainfall, UINT32/100, Unit: mm Byte 5: Frame counter, calculate the uplink amounts of every phase, range: 0~255 Note: 1) When the rainfall is cleared and start a new accumulation phase, the counter will be also cleared to 0; 2) When frame counter reaches 255 and not enter a new phase, it will always report 255.
Temperature Alarm	83	67	Temperature (2 Bytes) + Alarm Status(1 Byte) Alarm Status: 01=Threshold Alarm
Barometric Pressure Alarm	86	73	Pressure (2 Bytes) + Alarm Status(1 Byte) Alarm Status: 01=Threshold Alarm
Wind Speed Alarm	87	92	Wind Speed (2 Bytes) + Alarm Status(1 Byte) Alarm Status: 01=Threshold Alarm
Rainfall Alarm	88	ec	Rainfall (4 Bytes) + Frame Counter (1 Byte) + Alarm Status(1 Byte)

Alarm Status:01=Threshold Alarm

Example:

1. Periodic packet

017564 03671001 046871 05844605 0673aa27 07929201 08ecc413000025					
Channel	Туре	Value	Channel	Туре	Value
01	75 (Battery)	64=>100%	03	67 (Temperatu re)	1001=>0110= 272/10=27.2°C
Channel	Туре	Value	Channel	Туре	Value
04	68 (Humidity)	71=>113 Hum=113/2=56. 5%	05	84 (Wind Direction)	4605=>0546= 1350/10=135°
Channel	Туре	Value	Channel	Туре	Value
06	73 (Barometric	aa27=>27 aa=10154/10=10	07	92(Wind	9201=>0192= 402/10=40.2
	Pressure)	15.4hPa	07	Speed)	m/s
Channel	Pressure)	_		Speed)	m/s

2. Threshold alarm: report when reaching the threshold.

83 67 0001 01			
Channel Type Value			
83	67 (Temperature)	0001=>0100=255*0.1=25.5°C 01=ThresholdAlarm	

5.3 Downlink Commands

WS series support downlink commands to configure the device. The application port is 85 by default.

ltem	Channel	Туре	Description
ReportingInterval		03	2Bytes,unit:s
Reboot		10	ff(Reserved)
DeviceTime		11	4Bytes,unixtimestamp
UTCTimeZone	ff	17	INT16/10
ClearData		27	01: Clear Historical Data 00: Clear Accumulated Rainfall

		00: Off
Restoration of Power	67	01: On
		02: Return to Previous Working State
Rainfall Accumulation	6e	2 Putas unit: min
Phase	oe	2 Bytes, unit: min
Data Storage	68	01: Enable, 00: Disable
Data Retransmission	69	01: Enable, 00: Disable
		3 Bytes
		Byte 1: 00
Retransmission Interval	6a	Bytes 2-3: interval time, unit: s
		range: 30~1200s (600s by default)
		9 Bytes,
		Temperature: CTRL(1B)+Min(2B)+Max(2B)+
		0000000(4B)
		CTRL:
		Bit0~Bit2:
Threshold		001-below (minimum threshold)
Alarm-Temperature	06	010-over (maximum threshold)
/ dam remperature		011-within
		100 -below or above
		Bit3~Bit5: 001
		Bit6: 1=enable, 0=disable
		Bit7: 1
		9 Bytes,
		Wind Speed/Pressure:
		CTRL(1B)+0000+Max(2B)+
		0000000(4B)
		Rainfall:
		CTRL(1B)+0000+Max_Low(2B)+0000+Max_
Threshold Alarm	06	High (2B)
		CTRL:
		Bit0~Bit2:
		010-over (maximum threshold)
		Bit3~Bit5:

		010-wind speed
		011-rainfall
		100-pressure
		Bit6: 1=enable, 0=disable
		Bit7: 1
		3 Bytes,
		Byte 1: 01-temperature, 02-wind speed,
Collecting Interval	bb	03-rainfall, 04-pressure
		Byte 2-3: collecting interval, unit: s

Example:

1. Set reporting interval as 20 minutes.

ff03b004		
Channel Type Value		
ff 03(SetReportingInterval) b004=>04b0=1200s=20minutes		

2. Reboot the device.

ff10ff		
Channel	Туре	Value
ff	10(Reboot)	ff(Reserved)

3. Set time zone to GMT-4.

ff17d8ff		
Channel Type Value		
ff 17 (Set Time Zone) d8 ff => ffd8 = -40 = -4 * 10		

4. Set the device time.

ff 11 3d 1c de 5d			
Channel Type Value			
ff	11(Set Device Time)	3d 1c de 5d=>5d de 1c 3d=1574837309(Unixtimestamp) =>2019/11/17 14:48:29	

5. Set temperature threshold alarm.

ff06 cc 9600 2c01 00000000			
Channel Type Value			
		Ctrl: cc=>11 001 100	
ff	06(ThresholdAlarm)	100=beloworabove,001=temperature,1=enable	
		Min_value: 96 00=>00 96=15°C	

6. Set rainfall threshold alarm: rainfall is over 995.35 mm.

ff06 5a 0000 cf84 0000 0100			
Channel	nel Type Value		
ff	06(ThresholdAlarm)	Ctrl: 5a=>01 011 010	
		010=above, 011=rainfall, 1=enable	
		Max_value: cf 84 01 00=>00 01 84	
		cf=99535*0.01=995.35 mm	

5.4 Historical Data Enquiry

WS series support sending downlink commands to enquire historical data for specified time point or time range. Before that, ensure the device time is correct and data storage feature was enabled to store the data.

Command format:

Channel	Туре	Description
fd	6b (Enquire data in time point)	4 Bytes, unix timestamp
fd	6c (Enquire data in time range)	Start time (4 bytes) + End time (4 bytes),
		Unix timestamp
fd	6d (Stop query data report)	ff
	6a (Report Interval)	3 Bytes,
ff		Byte 1: 01
		Byte 2: interval time, unit: s,
		range: 30~1200s (60s by default)

Reply format:

Channel	Туре	Description
fc	6b/6c	00: data enquiry success
		01:timepointortimerangeinvalid
		02: no data in this time or time range
21	ce(HistoricalData)	Data time stamp (4 Bytes) + Temperature (2 Bytes) +
		Humidity(1Byte)+Pressure(2Bytes)+WindDirection
		(2 Bytes) + Wind Speed (2 Bytes) + Rainfall (4 Bytes)

Note: 1. The device only uploads no more than 300 data records per range enquiry. 2. When enquiring the data in time point, it will upload the data which is closest to the search point within the reporting interval range. For example, if the device's reporting interval is 10

minutes and users send command to search for 17:00's data, if the device find there is data stored in 17:00, it will upload these data. If no, it will search for data between 16:50 to 17:10 and upload the data which is closest to 17:00. Example: 1. Enquire historical data between 2022/10/10 14:45:00 to 2022-10-10 15:35:00.

fd6c c3291a63 b09a1a63			
Channel	Туре	Value	
fd	6c(Enquiredataintime range)	Start time: 6cbf4363 => 6343bf6c = 1665384300=2022/10/1014:45:00 Endtime:24cb4363=>6343cb24= 1665387300 =2022-10-10 15:35:00	

Reply:

fc6c00		
Channel	Туре	Value
fc	6c (Enquire data in time range)	00: data enquiry success

21ce 60c34363 0e01 64 8c27 c706 0400 10000000			
Channel	Туре	TimeStamp	Value
21	ce (Historical Data)	56991a63=> 2022-10-10 15:31:52	Temperature: 0e 01=>01 0e=27°C